Forschung & Entwicklung

Jahresbericht 2010
Vorwort

Liebe Leserinnen, liebe Leser,

die Notwendigkeit ist klar ersichtlich: Zukunft braucht Forschung!

Längst sind nicht alle Wechselwirkungen neuer Produkte bekannt, so werden wir mit neuen Themen konfrontiert:

- Nachhaltigkeit
- Gefährliche Substanzen
- Energiegewinnung
- Gebäudeintegration
- Dauerhaftigkeit
- Gebrauchstauglichkeit komplexer Produkte

Sicher ist durch die tragischen Vorfälle in Japan die Energiediskussion neu entfacht worden – unsere Branche ist noch mehr aufgerufen neue Werkstoffe zu entwickeln. Wir sind darauf vorbereitet; fordern Sie uns – „Ihr“ Institut.

Ihr

[Unterschrift]

Ulrich Sieberath
Leiter des ift Rosenheim
Inhaltsverzeichnis

1 Laufende Forschungsvorhaben
1.1 Holzbalkendecken in der Altbausanierung II
1.2 Geklebte Vakuumdämmung
1.3 Flächengewicht Mehrscheiben-Isolierglas
1.4 Emissionen aus Innentüren
1.5 EPDs für transparente Bauelemente
1.6 Holzfenster 2012
1.7 Erstellung von Anwendungsdiagrammen für Dreh- und Drehkippbeschläge

2 Abgeschlossene Forschungsvorhaben
2.1 Emissionen aus Bauelementen
2.2 Einsatzempfehlungen für Fensterlüfter
2.3 Dauerhaftigkeit von geklebtem Isolierglas (DAGI)
2.4 Langzeitverhalten Epsilon
2.5 Schalldämmung von Verbundglas

3 Publikationen
3.1 Abschlussberichte
3.2 Richtlinien
3.3 Fachartikel/Veröffentlichungen
3.4 Vorträge

4 Veranstaltungen
4.1 ift-Forschungstag 2010
4.2 Workshop Fensterlüfter
1 Laufende Forschungsvorhaben

1.1 Holzbalkendecken in der Altbausanierung II

Ausgangssituation/Problemstellung

Anhand der Messergebnisse wurden Planungsgrundlagen geschaffen, um die verschiedenen Rohdeckentypen schalltechnisch einstufen zu können. Im zweiten Schritt wurden unter reger Beteiligung der in der Arbeitsgruppe vertretenen Industriefirmen verschiedene Sanierungsmaßnahmen für die Altbaudecken zusammengestellt und geprüft.

Im nächsten Schritt sind nun Planungsgrundlagen zu erarbeiten, um die umfangreichen Laborergebnisse durch eine Prognose der Flankenübertragung auf die jeweilige Bausituation übertragen zu können. Um eine ausreichende Praxistauglichkeit des Verfahrens gewährleisten zu können, sollte es sich hierbei um ein vereinfachtes Verfahren mit Einzahlwerten handeln.

Zielsetzung
Ziel ist die Bereitstellung eines Prognosemodells, um die Luft- und Trittschalldämmung (R'_w und L'_nw) von Holzdecken im Altbau zu berechnen. Planer und Ausführende sollen dadurch in der Lage sein
a) die Luft- und Trittschalldämmung der vorhandenen Altbaudecke prognostizieren zu können,
b) geeignete Sanierungsmaßnahmen für die spezielle Altbausituation aus umfangreichen Konstruktionsdetails auswählen und das schalltechnische Verbesserungspotenzial beurteilen zu können,
c) die Luft- und Trittschalldämmung der sanierten Altbaudecke inklusive der Flankenübertragung prognostizieren zu können.

Vorgehensweise
Um die genannten Forschungsziele zu erreichen, wird ein methodischer Projekttansatz mit folgenden Kernpunkten vorgeschlagen:
– Analyse vorhandener Berechnungsmodelle auf ihre Anwendbarkeit im Altbau,
– Labormessungen zur Untersuchung der Flankenübertragung,
– Modellerstellung,
– Baumessungen zur Validierung des Prognosemodells.
1.2 Geklebte Vakuumdämmung

Untersuchung der Dauerhaftigkeit von VIP (Vakuum-Isolations-Paneele) mit verklebten Schutzschichten und in der klebtechnischen Anwendung

Auszangssituation/Problemstellung

Jahresbericht 2010

1 Laufende Forschungsvorhaben

für Geklebte Glaskonstruktionen (SSGS) Teil 1: Gestützte und ungestützte Systeme* wird der Thematik Unverträglichkeit mit anderen Materialien im Abschnitt 5.1.4.2 Rechnung getragen.

Zielsetzung

Vorgehensweise

1. Analyse und Klassifizierung hinsichtlich
 - der bisherigen Erkenntnisse zur Thematik (öffentliche Forschung, Erkenntnisse der Projektpartner),
 - der verwendeten Folien und des Aufbaus für VIP,
 - des Klebers und anderer Materialien wie Klebemörtel, Putz, Estrich, Betoninhaltstoffe, die in Kontakt mit den VIP stehen,
 - weiterer Belastungen, die z. B. durch die Verklebung auf das VIP wirken; Beispiel: unterschiedliche Längenausdehnung,
 - der Analyse weiterer Randbedingungen in der Nutzungsphase wie Temperaturen, Strahlung, Feuchtigkeit etc.

2. Festlegung der Untersuchungsschwerpunkte und der entsprechend durchzuführenden Prüfungen. Aufgrund der Ergebnisse der Analyse werden die relevanten Untersuchungsschwerpunkte sowie die hierzu notwendigen Prüfungen festgelegt:
 - Kombination der Folien und Klebstoffe bzw. Stoffe wie Beton, Estrich etc.
 - Anzahl und Größe der Probekörper
 - Sonstige Belastungen wie Temperatur, Druck, Zwängung

3. Vorbereitung der Probekörper

4. Durchführung der Untersuchungen/Prüfungen
 An den entsprechend Punkt 3 hergestellten Probekörpern werden hinsichtlich der in Punkt 2 festgelegten Belastungen Untersuchungen durchgeführt. Um eine Aussage zu erhalten, ob die jeweilige Belastung zu signifikantem Einfluss geführt hat, können folgende Parameter und deren Änderung ermittelt werden:
 - Ermittlung der Wärmeleitfähigkeit entsprechend EN 12667,
 - Ermittlung des Gasdrucks im Paneel (Verfahren im Rahmen der WPK der Hersteller),
 - visuelle Prüfung auf Veränderungen der Folie.

5. Auswertung der Untersuchungen und Dokumentation
1.3 Flächengewicht Mehrscheiben-Isolierglas

Energieeffizientes Mehrscheiben Isolierglas – Untersuchungen von technischen Maßnahmen zur Reduzierung des Flächengewichtes

Ausgangssituation/Problemstellung

Durch diese Entwicklungen erhöht sich das Gewicht des verwendeten Mehrscheiben-Isolierglases und infolgedessen des kompletten Bauelementes signifikant. Das Resultat sind u. a. folgende Auswirkungen:

- Erhöhte Belastungen der Beschläge. Hierdurch ergeben sich aufwendigere Konstruktionen sowie eine Erhöhung der Gefahr des Versagens von Beschlägen.
- Erhöhte Belastungen der Rahmenkonstruktionen,
- erhöhter Bedarf an Hebewerkzeugen zur Verteilung der Bauelemente auf der Baustelle,
- erhöhte Belastungen der Bauarbeiter bzw. Monteure beim Handling der Bauelemente und die sich hieraus ergebende gesundheitliche Gefährdung sowie die Erhöhung des Risikos von Unfällen.

Ein Reduzierung des Flächengewichts von Mehrscheiben-Isolierglases und somit eine Reduzierung der o. g. Belastungen scheint sinnvoll und wäre prinzipiell über zwei Strategien umsetzbar:

1. Einsatz von dünnerem Glas
2. Einsatz von transparenten Kunststoffen

Dünneres Glas könnte in allen drei Ebenen eingesetzt werden, d. h. auf der Außenseite, der Raumseite sowie als mittlere „Scheibe“. Dies gilt auch prinzipiell für den Einsatz von Kunststoffen. Hierbei ist jedoch z. B. zu beachten, dass beim außen- bzw. raumseitigen Einsatz von Kunststoffen die Gasdichtheit sichergestellt sein muss, sowie weitere Eigenschaften wie Kratzfestigkeit etc. gegeben sein müssten.
Zielsetzung
Im Rahmen des beantragten Vorhabens soll daher untersucht werden, mit welchen technischen Maßnahmen das Flächengewicht von Mehrscheiben-Isolierglas reduziert werden könnte und welche Auswirkungen sich hieraus ergeben.

Vorgehensweise

Die im Rahmen des Vorhabens zu untersuchenden Fragen sollen im Wesentlichen mit experimentellen Untersuchungen beantwortet werden. Dies betrifft im Speziellen die Dauerhaftigkeit, Verträglichkeit sowie sonstige weitere wesentliche Eigenschaften wie z. B. Luftschalldämmung.

Wo möglich, sollen die experimentellen Untersuchungen durch numerische Simulationen begleitet werden. Dies ist vorstellbar bei Fragestellungen sowohl zur Dauerhaftigkeit und zum statischen Verhalten als auch zum Wärmeschutz und zu optischen Eigenschaften.

Prinzipiell sind an möglichen Aufbauten alle Anforderungen zu stellen, die auch für „konventionelle“ Produkte gelten. Ein Großteil dieser Untersuchungen ist aus den Anforderungen der EN 1279 ableitbar.
1.4 Emissionen aus Innentüren

Untersuchung der raumluftrelevanten Emissionen aus Innentüren zur Bewertung des Verhaltens von Bauelementen in Bezug auf Hygiene, Umweltschutz und Gesundheit

Ausgangssituation/Problemstellung

Zielsetzung

Durch die Erkenntnisse der Untersuchungen sollen Grundlagen für die Erarbeitung eines Konzepts für die zukünftige normative Handhabung der Thematik im Bereich Innentüren gewonnen werden. Diese sollen sowohl für die Vereinheitlichung des Messverfahrens als auch auf Produktebene zur Normierung des Prüfverlaufs und der Probennahme verwendet werden können. Unter Umständen wäre es denkbar, dass die Klassifizierung von spezifischen Aufbauten in Zukunft anhand von Tabellen erfolgt, sogenannten CWFT-Tabellen (Classification Without Further Testing).

Vorgehensweise

1.5 EPDs für transparente Bauelemente

Entwicklung von Umweltproduktdeklarationen für transparente Bauelemente – Fenster und Glas – zur Bewertung der Nachhaltigkeit von Gebäuden

Ausgangssituation/Problemstellung

Zielsetzung

1. die Erarbeitung von sogenannten „Product Category Rules“ (PCR) für transparente Bauelemente sowie
2. die Erarbeitung einer Anwendungsmethodik sowie von entsprechenden Muster-EPDs.

Vorgehensweise

Dipl.-Ing. (FH)
Benno Bliemetsrieder

Projektleiter

Projektauflaufzeit
03/2009 bis 06/2011

Förderstelle
FORSCHUNGSINITIATIVE
Zukunft Bau
Bundesamt für Bauwesen
und Raumordnung (BBR) im
Rahmen der Forschungs-
initiative Zukunft Bau

Themengebiete
Holzfenster,
Nachhaltiges Bauen,
Energieeinsparung, EnEV,
Wärmeschutz, Dämmstoffe,
Verbundkonstruktionen

Jahresbericht 2010
1 Laufende Forschungsvorhaben

1.6 Holzfenster 2012

Nachhaltige Optimierung von Holzfensterprofilen zur Erreichung der Anforderungen der EnEV 2012

Ausgangssituation/Problemstellung

Durch die im Rahmen der Energieeinsparverordnung (EnEV) verschärf- ten Anforderungen an den Wärmeschutz von Bauobjekten müssen Fenster- und Außentürelemente bezüglich des Wärmedurchgangskoeffi-
cienten (Uw-Wert) verbessert werden. Die im Rahmen der EnEV 2009 geforderten Werte können dabei noch vergleichsweise einfach unter Beibehaltung der Fensterkonstruktionen gemäß DIN 68121 zusammen mit optimierten Dreifachverglasungen erreicht werden.

Die geplanten erhöhten Anforderungen der EnEV 2012 sowie weitere zukünftige Verschärfungen werden jedoch nicht allein durch Verbesse-
rungen im Bereich der Verglasung erreichbar sein, sondern erfordern eine deutliche Verbesserung des Uf-Wertes der Rahmen. Bisher exis-
tiert hierzu eine Reihe von Konzepten, die jedoch meist unter reiner Be-
trachtung eines verbesserten Wärmeschutzes entwickelt wurden. Zu-
dem handelt es sich bei den am Markt befindlichen Produkten um Ni-
schenlösungen. Sie wurden für den Einsatz in Passivhäusern oder Niedrigenergiegebäuden entwickelt, die für eine wirtschaftliche, indus-
trielle Großfertigung oftmals nur vereinzelt geeignet sind.

Eine allgemeinverbindliche, ganzheitliche Betrachtung, die auch stati-
ische Gesichtspunkte, dauerhafte Konstruktionsdetails sowie Belange der Nachhaltigkeit berücksichtigt, fehlt bisher. Besonders die Betrach-
tung der Nachhaltigkeit wird bei Bauprodukten zukünftig immer wichti-
ger werden. Die Qualität eines Gebäudes wird zukünftig an der Qualität der verbauten Bestandteile beurteilt werden. In diesem Zusammenhang
werden bei Bauprodukten sämtliche umweltrelevanten Gesichtspunkte
-des gesamten Produktlebenszyklus betrachtet und bewertet werden. Daher gilt es, sich gezielt auf die zukünftigen Anforderungen der EnEV
2012 vorzubereiten und rechtzeitig durch die Entwicklung und Bewer-
tung von Konzepten Lösungsmöglichkeiten für die erhöhten Anforde-
rungen zu finden.

Zielsetzung

Die Projektarbeit dient zur Vorbereitung und Umsetzung der sich im Rahmen der EnEV 2012 abzeichnenden verschärften wärmetechnischen Anforderungen. Ziel des Forschungsvorhabens ist es, Konzepte für eine Optimierung des Wärmeschutzes von Holzfensterprofilen – unter Be-
rücksichtigung aller fenstertechnischen Anforderungen – zu erarbeiten.
Im Rahmen der Projektarbeit werden dabei primär trennbare Verbund-
konstruktionen betrachtet und untersucht. Da eine einseitige wärme-
technische Optimierung dabei nicht ausreicht, ist es notwendig, zahlrei-
che weitere Aspekte mitzubetrachten. Im Wesentlichen geht es hierbei um Problemstellungen, die sich bei der Integration von Dämmstoffen in Holz-
Jahresbericht 2010

1 Laufende Forschungsvorhaben

fensterprofile ergeben. Neben den grundsätzlichen Systemfragen, d. h. mögliche Fenstertypen, Öffnungsarten etc. sind dies Fragestellungen zur Fügetechnik, Gebrauchstauglichkeit, statischen Belastbarkeit, Dauerhaftigkeit, Verglasung, Beschlagstechnik, Abdichtung sowie zu den Funktionseigenschaften der Konstruktion.

Vorgehensweise

Neben ersten Entwicklungsansätzen der beteiligten Fensterhersteller wurden auch ein Prototyp mit innovativer Verglasungstechnik bzw. die Auswirkungen der veränderten Konstruktionen auf die Leistungseigenschaften untersucht. Die Elemente wurden dazu auch mechanischen Belastungen und Dauerfunktionsprüfungen unterzogen. Erste Erkenntnisse zeigen das große Potenzial künftiger Holzfensterkonstruktionen. Im weiteren Vorgehen sollen auch die Einflüsse auf andere wichtige Leistungseigenschaften wie Einbruchhemmung, Schallschutz etc. untersucht werden.

Abbildung
Beispiele für Potenziale aktueller Holzfensterkonstruktionen
1.7 Erstellung von Anwendungsdiagrammen für Dreh- und Drehkippbeschläge

Ausgangssituation/Problemstellung

Anwendungsdigramme (AWD) für Dreh- und Drehkippbeschläge zeigen graphisch die Zusammenhänge zwischen zulässigen Flügelfalzbreiten und Flügelfalzhöhen in Abhängigkeit von unterschiedlichen Glas- und Füllungsgewichten auf. Generell kommt der Beachtung und der Einhaltung der AWD (Flügelgrößen und Flügelgewichte) im Hinblick auf die Gebrauchstauglichkeit von Fenstern und Fenstertüren eine besondere Bedeutung zu.

Ziel der jeweiligen AWD ist es, die Verwendung der Beschläge ausschließlich in solchen Flügelausführungen freizugeben, bei deren Anwendung Flügelmassen und Kräfte (Belastungen) auftreten, die kleiner oder maximal gleich hoch sind wie in den dafür zugrunde gelegten, erfolgreich durchgeführten, Prüfungen.

Zielsetzung

Jahresbericht 2010
1 Laufende Forschungsvorhaben

Vorgehensweise
Zur Erarbeitung der AWD sind vier Arbeitspakete (AP) vorgesehen:

AP 1
Erarbeitung der mathematischen Grundlagen für die Erstellung und Berechnung von AWD für Rechteck-, Schrägbogen- und Rundbogenfenster.

AP 2
Dokumentation und Zusammenfassung der Berechnungsgrundlagen in einem ift-Leitfaden

AP 3
Entwicklung einer Software für die Erstellung und Berechnung von AWD für Rechteckfenster (Phase 1)

AP 4
Entwicklung einer Software für die Erstellung und Berechnung von AWD für Schrägbogen- und Rundbogenfenster (Phase 2).

Abbildung Beispielhafte Darstellung eines Anwendungsdiagramms

Industriepartner
Mitglieder des ift-Expertenkreises QM 328

Fachverband Schlösser und Beschläge, Velbert
2 Abgeschlossene Forschungsvorhaben

2.1 Emissionen aus Bauelementen

Untersuchung der Emissionen aus Fenstern und Außentüren zur Bewertung des Verhaltens von Bauelementen in Bezug auf Hygiene, Umweltschutz und Gesundheit

Ausgangssituation/Problemstellung

Im Zuge des energiesparenden Bauens können immer dichter werdende Gebäudehüllen zu verstärkten Anreicherungen gefährlicher Substanzen in der Innenraumluft führen. Die Bewertung der Emissionen organischer Bestandteile (VOC, SVOC) aus Baustoffen und Bauelementen gewinnt dabei zunehmend an Bedeutung.

Zielsetzung

Als Beitrag zur Umsetzung der in der europäischen Bauproduktenrichtlinie formulierten Anforderungen sollen die Emissionen von VOC und SVOC aus Bauelementen und deren Komponenten aus dem Bereich der Fenster und Außentüren untersucht werden.
Ergebnisse

Sollten europäische Emissionsklassen für Bauprodukte verfügbar werden, wird auf Basis der Erkenntnisse des Forschungsvorhabens eine Anerkennung von Fenstern als Produkte „without testing“ bzw. „without further testing“ (wt/wft) oder zumindest eine fakultative Einstufung in eine der vorgefassten Emissionsklassen empfohlen. Eine Untersuchung wäre in diesem Fall nur bei besonderen Anforderungen an das Emissionsverhalten oder zur Erreichung einer strengeren als der vorgefassten Emissionsklasse notwendig.

Um reproduzierbare Messwerte sicherzustellen, muss bei einer Untersuchung der VOC-Emissionen an kompletten Elementen bei der Probenahme nachvollziehbar sein, aus welcher Phase des Produktlebenszyklus die einzelnen Komponenten stammen und wie der Fertigungsablauf stattgefunden hat. Eine Untersuchung der VOC-Emissionen an kompletten Elementen ist ausschließlich in einer Großkammer möglich, dabei sollten die speziellen Vorgehensweisen der Projektarbeit berücksichtigt werden. Aufgrund der Komplexität des Produkts Fenster sind Vorgehensweisen, die bei anderen Bauprodukten zur Anwendung kommen, nicht ohne Weiteres umzusetzen.

2.2 Einsatzempfehlungen für Fensterlüfter

Erarbeitung von Einsatzempfehlungen für dezentrale Lüftungseinrichtungen in Verbindung mit dem Fenster für den Neu- und Altbau

Ausgangssituation/Problemstellung

In der Praxis ist jedoch festzustellen, dass der Einsatz von dezentralen Lüftungsgeräten auf keine hohe Akzeptanz stößt. Dies kann u. a. damit begründet werden, dass der Verbraucher mit der komplexen Thematik Lüftung allein gelassen wird. Zusätzlich sind neben den reinen lüftungs-technischen Aspekten (primäre Funktion) auch noch andere wichtige sekundäre Funktionen wie z. B. Schall-, Wärme-, Brandschutz, Gebrauchstauglichkeit etc. zu berücksichtigen.

Die im Rahmen dieses Projektes zu erarbeitenden Einsatzempfehlungen helfen dem Nutzer bei der Auswahl des geeigneten und notwendigen Produktes in Bezug auf die spezifischen Anforderungen, ohne dass ein komplexer Planungsvorgang notwendig wird.
Zielsetzung
Ziel des Forschungsvorhabens war die Erarbeitung von Einsatzempfehlungen für dezentrale Lüftungsgeräte, die im bzw. am Fenster integriert sind.

Ergebnisse

Wird für die Wohnung eine freie Lüftung über Fensterlüfter umgesetzt, so ist mit dieser Maßnahme gleichzeitig die Zuluftversorgung für einen fensterlosen Raum sichergestellt.

2.3 Dauerhaftigkeit von geklebtem Isolierglas (DAGI)

Einsatz von geklebten Verglasungen im Fensterbau – Einfluss von innovativen Techniken auf die Dauerhaftigkeit von Mehrscheiben-Isolierglas

Ausgangssituation/Problemstellung

Zielsetzung

- die Wärmeschutz-Funktion des Glases (Gasverlust, Zerstörung der Low-e-Schicht),
- die visuelle Beschaffenheit des Glases (Feuchtigkeit im Scheibenzwischenraum) und
- die Dauerhaftigkeit und Nutzungssicherheit des Fensters generell haben.

Ergebnisse
Es wurde untersucht, inwieweit sich verschiedene Konstellationen bzgl.
- Klebeart (Dichtstoff oder Klebeband), Anordnung der Fuge, Glasaufbau und sekundäre Dichtstufe des Glaselements
leitet, zum anderen würde ein möglicher Verzicht auf diese Maßnahmen die Wirtschaftlichkeit der geklebten Systeme verbessern. Daraus resultieren allerdings Verlagerungen der aussteifenden Wirkung auf die Glasscheibe und bewirken damit eine Erhöhung der Lasten auf den Randverbund. Nach durchgeführter Belastung wurden diese mittels der Analyse von

- Gasverlustrate,
- Gaskonzentration,
- Trocknungsmittelbeladung und
- der geometrischen Verformung an den MIG

ermittelt. Die Einzelwerte von insgesamt 110 Messungen wurden gegenübergestellt und ausgewertet, dabei konnten zusammenfassend folgende wesentliche Erkenntnisse gewonnen werden:

- Die Art der Klebetechnik („weich“/elastisch, „hart“/steif) und die Fugenausbildung und -anordnung haben kaum einen Einfluss auf die Größe der ermittelten Kennwerte.
- Das Material der sekundären Dichtstufe hat keinen großen Einfluss auf die Kennwerte Gasverlustrate, Trocknungsmittel-Beladung und Gaskonzentration.
- Es lagen große Unterschiede bei der Verformung zwischen Polysulfid und Polyurethan als sekundäre Dichtstufe vor.
- Die Verformung des Randverbundes bei fehlender, lastabtragender Klotzung würde sich dabei ohne Begrenzung bis zum Versagen der Dichtstufen fortsetzen (außer bei der Falzgrundklebung). Die Absenkung der Scheiben wird dabei so groß, dass eine erhebliche optische Beeinträchtigung der MIG vorliegt und für die eingesetzten Dichtstoffe eine erhöhte UV-Belastung zu erwarten ist. Bei weitergehender Scherbelastung der primären Dichtstufe liegt die Gefahr des Abrisses des Butyls vor (außer bei der Falzgrundklebung).

Bei den Untersuchungen konnten keine Anzeichen festgestellt werden, dass die Verglasung mittels einer umlaufenden Klebung des Glases zum Flügelrahmen („direct glazing“) negative Auswirkungen auf die Gebrauchstauglichkeit und Dauerhaftigkeit des MIG hat. Trotz der breit angelegten Untersuchungen an praxisüblichen Glas- und Rahmensystemen kann nicht endgültig ausgeschlossen werden, dass sich davon stark unterscheidende Systeme abweichend verhalten.

Abbildung
Statisch belastete MIG nach Klimalagerung
2.4 Langzeitverhalten Epsilon

Untersuchung des Langzeitverhaltens der Degradation des Emissionsvermögens von Baustoffen mit vermindertem Emissionsvermögen aufgrund von künstlicher und „natürlicher“ Alterung

Ausgangssituation/Problemstellung

Zielsetzung

Ergebnisse
Nachfolgend sind Ergebnisse und Untersuchungen des ift Rosenheim dargestellt. Weitere sind dem Abschlussbericht zu entnehmen.

Durch die Charakterisierung der Probekörper und Untersuchung der Oberflächenfolien bzw. Schutzschichten (zum Schutz der IR-aktiven Schicht) konnten die Probekörper in Gruppen bezogen auf das eingesetzte Material und die gemessenen Emissionsgrade eingeteilt werden (siehe Abb. 1).

Abbildung 1
Aufnahme des Querschnitts eines Probekörpers bei 100-facher Vergrößerung. PET-Folie (als Oberflächenfolie) und IR-aktive Schicht sind klar erkennbar.

Abbildung 2
Realversuch: Die eingebauten Probekörper wurden im Neuzustand, nach 9 und 12 Monaten vermessen.
2.4 Schalldämmung von Verbundglas

Diplomarbeit zur Bestimmung eines Analyseverfahrens zur Identifizierung von Zwischenschichten in Verbundglas

Ausgangssituation/Problemstellung

Zielsetzung

Ziel des Forschungsvorhabens war es, Analysemethoden zu finden, mit deren Hilfe die Qualität einer Zwischenschicht (z. B. PVB-Folie), eingebaut in einer konkreten Verbundscheibe, identifiziert werden kann.

Ergebnisse

Nachfolgend sind die Ergebnisse und Untersuchungen dargestellt. Weitere sind der Diplomarbeit zu entnehmen.

Analyse des Frequenzverlaufs:

Die Messbeispiele in Abb. 1 zeigen charakteristische Resonanzeinbrüche (Koinzidenzgrenzfrequenz) bei der Messung der Luftschalldämmung. Diese lassen Schlüsse auf die Qualität der Verbundschicht zu.

Abbildung 1 Messbeispiele für das bewertete Schalldämm-Maß
Messung der mechanischen Impedanz

Abbildung 2
Messbeispiele für die mechanische Impedanz

Weitere Verfahren

Im Rahmen der Diplomarbeit wurden weitere Verfahren hinsichtlich ihrer Eignung zur Analyse von Verbundschichten untersucht und diskutiert. Die diskutierten Verfahren werden teilweise für andere Zwecke im Materialprüflabor im ift Rosenheim verwendet. Es handelt sich dabei um die Folienanalyse mit Infrarotspektroskopie und Löse- und Quellversuche.

Zusammenfassung

Die Diplomarbeit zeigte verschiedene Möglichkeiten auf, die Folienqualität von Verbundglas zu analysieren. Die Analyse des Frequenzverlaufs der Schalldämmkurve gibt gute Hinweise auf die akustische Qualität der Verbundscheibe, die über die Messung der mechanischen Impedanz bestätigt werden. Eine zerstörungsfreie Methode zur Analyse von Verbundschichten konnte jedoch nicht gefunden werden.
3 Publikationen

Alle Publikationen stehen unter www.ift-rosenheim.de in den Bereichen Forschung, Literatur und Presse zur Verfügung bzw. können dort online bestellt werden.

3.1 Abschlussberichte

Einsatzempfehlungen für Fensterlüfter
Norbert Sack, ift Rosenheim
Prof. Dr. Harald Krause, Hochschule Rosenheim
ift Rosenheim, Mai 2010

Dauerhaftigkeit von geklebtem Isolierglas
Ingo Leuschner; Christian Hübner, Karin Lieb; ift Rosenheim
ift Rosenheim, Mai 2010

Emissionen aus Bauelementen
Ingo Leuschner, Benno Bliemetsrieder, Norbert Sack; ift Rosenheim
Prof. Dr. Harald Larbig, Dr. Johann Voit, Harald Greiner; Hochschule Rosenheim
ift Rosenheim, Dezember 2010

Untersuchung des Langzeitverhaltens der Degradation des Emissionsvermögens von Baustoffen mit vermindertem Emissionsgrad aufgrund von künstlicher und „natürlicher“ Alterung
Dr. Ing. Martin H. Spitzner, Johannes Cammerer, Holger Simon; FIW München
Christine Lux, Norbert Sack; ift Rosenheim
FIW München, ift Rosenheim, Dezember 2010
3.2 Richtlinien

ift-Richtlinie LU-02/1
Fensterlüfter; Teil 2: Empfehlungen für die Umsetzung von lüftungstechnischen Maßnahmen im Wohnungsbau
ift Rosenheim, März 2010

ift-Richtlinie AB-02/1
Luftdichtheit von Rollladenkästen; Anforderung und Prüfung
ift Rosenheim, März 2010

ift-Richtlinie WA-05/1
Validierung von Software; Verfahren zur Validierung von Programmen zur Berechnung der U_{w}-Werte von Fenstern und Türen bzw. der U_{cw}-Werte von Vorhangfassaden
ift Rosenheim, März 2010

ift-Richtlinie FE-11/1
Nutzungssicherheit an kraftbetätigten Fenstern und Fenstertüren; Prüfung von Fenstern nach VFF-Merkblatt KB.01
ift Rosenheim, August 2010

ift-Richtlinie WA-13/1
Ψ-Werte bei Vorhangfassaden; Verfahren zur Ermittlung von längenbezogenen Wärmedurchgangskoeffizienten (Ψ-Werte) für Vorhangfassaden in Verbindung mit Füllungen aus Mehrscheiben-Isolierglas, Paneelen und Einspannrahmen
ift Rosenheim, September 2010

3.3 Fachartikel/Veröffentlichungen

Bliemetsrieder, Benno:
F&E Aktivitäten des ift Rosenheim – VOC Emissionen aus Innentüren
ift impulse, 1/2010

Bliemetsrieder, Benno:
VOC Emissionen aus Bauelementen – Hintergrund, Umsetzungsvorschläge sowie Nachweis- und Bewertungsverfahren im Zeichen verschärfter Kundennachfragen
Tagungsband Rosenheimer Fenstertage 2010

Leuschner, Inga; Hübner, Christian:
Klotzt Du noch oder klebst Du schon? Dauerhaftigkeit von geklebtem Isolierglas
ift impulse, 3/2010
Leuschner, Ingo:
Beeinträchtigt Glasklebung die Dauerhaftigkeit von geklebtem Isolierglas? Ergebnisse eines ift-Forschungsprojekts
Tagungsband Rosenheimer Fenstertage 2010

Rabold, Andreas, Jehl, Wolfgang
Einfluss unterschiedlicher Dachdeckungen auf die Schalldämmung von Steildächern
Bauphysik, 5, 2010, S. 327-329

Sack, Norbert:
Lüften mit Fensterlüftern
ift impulse, 1/2010

Sack, Norbert:
F&E Aktivitäten des ift Rosenheim – F&E Vorhaben „Erarbeitung von Einsatzempfehlungen für Fensterlüfter abgeschlossen
ift impulse, 2/2010

Sack, Norbert:
F&E Aktivitäten des ift Rosenheim – Innovationsgutscheine sollen Forschung und Entwicklung bei KMU unterstützen
ift impulse, 2/2010

Sack, Norbert:
F&E Aktivitäten des ift Rosenheim – Neue Forschungsvorhaben: Untersuchung der Dauerhaftigkeit von VIP mit verklebten Schutzschichten
ift impulse, 3/2010

Sack, Norbert:
F&E Aktivitäten des ift Rosenheim – Reduzierung des Flächengewichtes von Mehrscheiben-Isolierglas
ift impulse, 3/2010

Sack, Norbert:
F&E Aktivitäten des ift Rosenheim – Forschungsvorhaben „Emissionen aus Bauelementen kurz vor dem Abschluss“
ift impulse, 4/2010

Sack, Norbert:
Workshop Fensterlüfter führt Forschungsergebnisse in die Praxis über
ift impulse, 4/2010

Sack, Norbert:
Interview: Fenster zur Energiegewinnung
BUND Jahrbuch 2010 Ökologisch Bauen & Renovieren
Jahresbericht 2010
3 Publikationen

Sack, Norbert:
Knoff Hoff für die Fensterbranche

Sack, Norbert:
Einsatzempfehlungen für Fensterlüfter
Glaswelt 7/2010

Sack, Norbert; Benitz-Wildenburg, Jürgen:
Fensterlüftung im Wohnungsbau
Bau und Möbelschreiner 8/2010

von Houwald, Bernhard:
Nachhaltiges Bauen in Deutschland
ift impulse, 1/2010

von Houwald, Bernhard:
EPD für Fenster, Türen und Fassaden; Anforderungen und Lösungsansätze für Bauprodukte
Tagungsband Rosenheimer Fenstertage 2010

Wortner, Patrick:
Green Windows – mehr als nur Energieeffizienz
ift impulse, 4/2010

3.4 Vorträge

Bliemetsrieder, Benno:
Indoor air related evaluation of windows and doors
Emissions of regulated dangerous substances of building products, Hannover, 17. März 2010

Bliemetsrieder, Benno:
Innenraumbelastungen durch Emissionen von Türen? Erste Erkenntnisse aus dem Forschungsprojekt Rosenheimer Tür- und Tortage, 10. Mai 2010

Bliemetsrieder, Benno:
Emissionen aus Bauelementen – Gefährdungspotenzial, Nachweisverfahren und Anforderungen im Zeichen verschärfter Kundennachfrage Rosenheimer Fenstertage, 7.-8. Oktober 2010

Leuschner, Ingo:
Jahresbericht 2010
3 Publikationen

Rabold, Andreas:
Bauen mit Holz – Schallschutz
LHK Rosenheim, 15. März 2010

Rabold, Andreas:
Prognose der Schalldämmung von leichten Trennwänden
DAGA’10, Berlin, 18. März 2010

Rabold, Andreas:
Schallschutz bei Holzbalkendecken und Schallschutz in Theorie und Praxis – Planung, Nachweis und Ausführung
Brandenburgischer Bauingenieurtag, Cottbus, 19. März 2010

Rabold, Andreas:
Schallschutz und Brandschutz im Holzbau – Teilbereich Schallschutz
Bauzentrum München, 19. Mai 2010

Rabold, Andreas:
Schallschutz bei Holzdecken – Standardlösungen und Optimierungsansätze
DHV Herbsttagung, Kassel, 12. November 2010

Rossa, Michael:
3-fach Isolierglas und Absturzsicherung
ift Fassadenberatertagung, Darmstadt, 17. Juni 2010

Rossa, Michael:
Akutelle Forschungsprojekte mit dem Bundesverband Flachglas
BF Produktsymposium 3-fach Glas, Hannover, 2. September 2010

Rossa, Michael:
Akutelle Forschungsprojekte mit dem Bundesverband Flachglas
BF Produktsymposium 3-fach Glas, Nürnberg, 21. September 2010

Sack, Norbert:
Die Zukunft des Fensters – Optimierung von Bauelementen in der Gebäudehülle
Forum des BMVBS auf der DEUBAU 2010, 12.-15. Januar 2010

Sack, Norbert:
Die Zukunft des Fensters – Optimierung von Bauelementen in der Gebäudehülle
Forum des BMVBS auf der DEUBAU 2010, Essen, 12.-15. Januar 2010

Sack, Norbert:
Die Zukunft des Fensters – Optimierung von Bauelementen in der Gebäudehülle
Jahresbericht 2010
3 Publikationen

Sack, Norbert:
Dichte Fenster brauchen Lüftung
ift Sachverständigenforum, Rosenheim, 4. Februar 2010

Sack, Norbert:
Einsatzempfehlungen für Fensterlüfter
ift Forschungstag 2010, Rosenheim, 21. April 2010

von Houwald, Bernhard:
Nachhaltigkeitszertifizierung von Gebäuden
ift Fassadenberatertagung, Darmstadt, 17. Juni 2010

von Houwald, Bernhard:
EPD für Fenster, Türen und Fassaden erfolgreich nutzen – Umweltproduktdeklarationen für geforderte
Gebäudezertifizierungen in der Praxis
Rosenheimer Fenstertage, 7.-8. Oktober 2010
4 Veranstaltungen

4.1 ift Forschungstag 2010

Es liegt was in der Luft – Lüften mit Fensterlüftern

Abbildung 1 Über 120 Teilnehmer verfolgten interessiert die Vorträge

Abbildung 2 Fensterlüfter, d. h. spezielle Lüftungselemente, die in das Fenster integriert sind bzw. in direktem Zusammenhang mit dem Fenster stehen, ermöglichen eine nutzerunabhängige und kontrollierte Lüftung.
renztechnik zeigt, dass Lüftung eines der zentralen Themen der nächsten Jahre sein wird. Ebenso fordert die EnEV die Einhaltung des hygienischen Mindestluftwechsels. Im Rahmen eines am ift durchgeführten Forschungsvorhabens wurden Werkzeuge erarbeitet, die die Branche bei der Auslegung von Fensterlüftern unterstützen sollen.

Ein weiteres Highlight des Forschungstages war die begleitende Fachausstellung. Hersteller von Fensterlüftern informierten über die konkrete praktische Umsetzung.

Abbildung 3 Die begleitende Ausstellung lud zum Fachgespräch ein.
Jahresbericht 2010
4 Veranstaltungen

ift Forschungstag 2010
Es liegt was in der Luft – Lüften mit Fensterlüftern

21. April 2010

Institut für Thermisches und Isolierendes Bauwesen
Rosenheim

Programm
Programm des ift Forschungstages 2010

Mitteilung, 21. April 2010

9.15 Rekuperatoren und Rücksichtigung
 Dipl.-Phys. Norbert Eck, IFRosenheim

9.30 Energiesparmaßnahmen für Fensterlüfter
 Präsentation von der Entwicklung des GRN 040-0
 Dipl.-Phys. Norbert Eck, IFRosenheim

10.15 Witterungseinfluss auf die Leistung
 Lüftungsprozesse und -anlagentechnik
 Prof. Dr.-Ing. Hans-Josef Rosenthal, Fachhochschule Rosenheim

10.55 Kaffeeservice

11.30 Lüftungsanlagen in Bestandsbauten
 Analyse und Optimierungsprospekt
 Dipl.-Ing. Julia Rößler, GZ- Tu Braunschweig

13.45 Was ist immer ein Ventilator auch?
 Energienutzung durch freie Luftströmung im Wohnraum der Zukunft
 Dr.-Ing. Martin Pfeifer, Münchner Schulungszentrum für Lüftungs- und Heiztechnik

15.15 Kaffeeservice

15.45 Lüftung in Europa
 Anforderungen und Umsetzung
 Dipl.-Ing. Martin Nib, GSV-Gebäudeindustrie Service GmbH, München

16.30 Zusammenfassung und Abschlussdiskussion

17.00 Verabschiedung und Ende der Veranstaltung

Es liegt was in der Luft – Lüften mit Fensterlüftern

Eine begleitende Fachausstellung bietet Ihnen über interessante Produktlösungen zu Fensterlüftern.

Die Forschungsfeldung Zukunft Bau stellt die Möglichkeiten der Forschungserprobung durch das BMBF dar.

Zielgruppe
Hausverwalter sowie Fensterlüfter- und Lüftungsgeschaften, Fachleute und Architekten, energieeffiziente Haustechnik

Fachleute
Dipl.-Ing. Hans-Josef Rosenthal, ift Rosenheim
Dr. Winfried Heuser, DGNB International GbR
Prof. Dr. Hans-Josef Rosenthal, Fachhochschule Rosenheim
Dr. Ing. Maximilian Schütz, Spezialist des B-Bereiches

Fachzeitschriften
Dipl.-Phys. Norbert Eck, IFRosenheim

ift Akademie
Rosenheim GmbH
Theodor-Gottlieb-Str. 1-6
83306 Rosenheim
Tel. +49 (0)8081-201
iftakademie@ift-rosenheim.de
www.ift-rosenheim.de
4.2 Workshop Fensterlüfter

Im Theorie-Teil des Workshops erarbeiteten die Referenten Prof. Dr. Harald Krause (Hochschule Rosenheim) sowie Dr. Joachim Hessinger und Norbert Sack (beide ift Rosenheim) gemeinsam mit den Workshopteilnehmern die notwendigen fachlichen Grundlagen. Skizziert wurde auch der Inhalt der ift-Richtlinie LU-02/1 Fensterlüfer – Teil 2, in der es um Einsatzempfehlungen für Fensterlüfer geht. Übungen an konkreten Fallbeispielen zum Umgang mit der ift-Richtlinie sowie den zugehörigen Berechnungstools führten zur sofortigen Umsetzung des vermittelten Wissens.

Der Workshop erhielt ausnahmslos eine positive Bewertung durch die Teilnehmer. Speziell die fachliche Kompetenz der Referenten, die gelöste und angenehme Arbeitsatmosphäre sowie der Praxisbezug durch die konkreten Beispielplanungen wurden hierbei genannt.
Impressum

Herausgeber:

ift Rosenheim
Theodor-Gietl-Str. 7-9
83026 Rosenheim

Telefon +49 (0) 8031 261-0
Telefax +49 (0) 8031 261-290
E-Mail: info@ift-rosenheim.de
www.ift-rosenheim.de

Hinweise:

© Copyright ift Rosenheim 2011